SUPERP[ISIII]N OF COLLINEAR
HARMONIC OSCILLATIONS

1.1. PRINCIPLE OF SUPERPOSITION AND LINEARITY

The principle of superposition states that when two or more harmonic waves are
simultaneously propagating in an elastic medium are super imposed then resultant displacement
of any particle at any instant is equal to the vector sum of the displacements of that particle,
due to individual (separate) waves at that instant. According to this principle each wave
moves independently as if other waves were not present at all and their individual shapes and
other characteristics are not changed due to the presence of another.

To explain this principle of superposition, let y; is the displacement of point x at time t.
The wave is described by function y; (x, t). Hence this function must be the solution of

differential equation of wave motion
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Similarly let y, be the displacement of the same point x at the same time ¢t. This is also
the solution of differential equation of wave motion
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Adding egs. (1.1) and (1.2), we get
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Hence eq. (1.3) shows that the sum of two wave functions described by eq. (14) alsg

satisfy the differential equation of wave motion as satisfied by each separate Wave functio,
Therefore y (x, ) is the proper wave function to describe this Placement.of point x

As it is clear from €q. (1.4) that the displacement y of the particle x at time ¢ is e

sum of the displacements y1 and y; of that point due to separate waves at the same

the principle of Superposition is the consequence of differential equation of wave
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differential equations.

Thus the principle of superposition holds for those waves only whose equations of

motion are linear. Thus it does not hold for shock waves created by explosions and water
waves.

Consider two simple harmonic oscillations of e

and phase acting on a particle in y-direction.
Let y; and y, are displacements of two S.H.M's of same
Y1 = asin (ot + ¢) ...(1.5)

and Y2 = b sin (ot + ¢,) ...(1.6)
where a and b are the amplitudes and
harmonic motion.

According to superposition

qual frequency but of different amplitudes

given as
Yy=wmnm+y
or Y = asin (ot + ¢1) + b sin (ot + @)
= a [sin wt cos ¢; + cos wt sin ®1) + b [sin wt cos @2 + cos wt sin @3]
= a sin wt cos ¢y + a cos wt sin #1+ b sin wt cos ¢2+ b cos wt sin ¢
Y=(acos ¢1+ b cos ¢, sin @f + (a sin @) + b sin ®$2) cos wt ...(1.7)
Put A cos 0 =acos ¢p1+ b cos ¢y ...(1.8)
and Asin 0 =asin ¢+ bsin ¢, .(1.9)

in eq. (1.7), we get
¥ =Asin wt cos @ + A cos wt sin @
or y=A(sinwtcost9+cosa)tsin0)
e y = A sin (ot + 0) -.(1.10)



Squaring and adding egs. (1.8) and {1.9) we get
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Dividing eq. (1.9) by eq. (1.8), we get
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From egs. (1.10), (1.11) and (1.12) shows that the resultant effect of two collinear SHM.'s
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Special Cases

Let us consider the following spedal cases.

Case Ist when @1—- ¢ =2nx
where 1=0,1, 2, 3, .. etc. ie. phase difference is even multiple of

Then eq. (1.11) becomes

or on 6 =

A2=a+ b? + 2ab cos (2m)

=2+ B +2ab (1) (-cos2nw=1)
=+ P+ 2ab
AZ=(a+ by
or A=a+b --(1.13)

Case IInd. When - ¢=@2n+ 1)
When n=0,1,2 3, ..thencos (1 - @) =cos(Zn+1) a=-1
Then eq. (1.11) becomes

Al=a2+ PP +2b (- 1)
or A2=a>+ b - 2ab
or A2=(a- bpP
or A=a-b (L19)

F 2= b, then A = 0. The particle will remain at rest
Case IlIrd. ¥ a=band ¢; # ¢
Then eq. (111) becomes A2 =a*+ @ + 22% cos ($1— ¢2)
= 227 + 202 cos (pr — ¢2) = 22 [1 + cos (91— 2]

=242 [l+2cosz (¢1 "Pz)]
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A2 =442 cos? (1 ;flf’z)
1
or A =2a COSE(¢1 —¢2) (115,

and eq. (1.12) becomes
asin ¢ +asin ¢,
fam = a cos ¢ +4a cos ¢,
_a(sing; +sing,) _ sin ¢, +sing,
" a(cosg; +cosgy)  cos Py +cos P2

tan 6 =tan%(¢] +¢5)

1
or 6 =3 (p1 +92) --(1.16)

The amplitude will be maximum A = 22 when

C05‘2‘ (@1—¢2)=1 or $1— @2 = 2nz where n is an integer.
This is the case when component variations are in phase.
The amplitude will be zero when

1
COSE(¢'1“‘¢2)=0 or ¢1—- ¢ =(2n+1) =,
¥2

this is the case when component variations are in
opposite phase. ol

Graphical representation of resultant amplitude of 0
superposition of two collinear S.H.Ms of equal frequency Fig. 1.1.
but of different amplitudes and phases are shown in
Fig. (1.1).

1.3. SUPERPOSITION OF TWO COLLINEAR HARMONIC OSCILLATIONS
WITH DIFFERENT FREQUENCIES (BEATS)

When two waves of nearly same frequency and having a constant initial phase difference
propagate simultaneously along the same straight line and in the same direction, they
superimpose and the intensity of sound at a point increases and decreases alternatively. This
phenomena of increasing and decreasing of sound is called beats.

Let two sound waves of nearly same frequencies n1 and ny (ie. ny > ny) travelling in the

Y1 = asin it = a sin 2zn,t ...(1.17)
arvdd Y2 = a sm wsyt = a sin 2an,t ...(1.18)
According to principle of superposition of waves the resultant displacement at time t is
Y=wn+uy
= Y = a sin 2amt + a sin 27n,t
Yy = a (sin 2wnyt + sin 27Tn,t) ..(1.19)

or
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According to formula
sin A + sin B =25in(A; B)Cos (-@)

N OF COLLINEAR HARMONIC OSCILLATIONS 1.5

2
27 (n+m))t  2m(m —m)t
Eq. (1.19) becomes y =2asin ( > ) cos ( 12 2 -(1.20)
+

Let us take L 2n2 =n
Then eq. (1.20) becomes

y = 2a sin 2ant cos & (ng - 1) ¢t ~(1.21)
Put A=2ac0s m(ng—-myt (1.22)
in eq. (21), we get y = A sin 2nnt -.(1.23)

where A is amplitude of the resultant wave

From eq. (1.23) it is clear that the resultant vibration is also simple harmonic vibration
of amplitude A and frequency n.

Eq. (1.22) shows that amplitude ‘A’ of the resultant wave varies with time t.
Maxima

The intensity (of sound) at the observation point will be maximum if amplitude ‘A’ is
maximum.

Le. s & (ng—ny t=1
or w(ng—-ny) t=mn
where m =0, 1, 2, 3, ...
=T 1.24
or (o —1) ...(1.24)
Putting m =0, 1, 2, 3 .., we get
1 2 3
t =0, ..(1.25)

n—h ’ nl-nzl n —np
At these instants the intensity is maximum
1

m—=m

Time internal between two successive maxima =~

-. Frequency of maxima per second = (n; - 1y).
Minima : For the intensity to be minimum at the observation point, amplitude ‘A’
should be minimum

ie. s  (n—mny t=0
4
or n(nl—nz)t=(2m+l)Ewherem=0,1,2,3.
_ (2m+1)
2(m —ny)

Putting m =0, 1, 2 3 ..
1 3 5
2(n—m) 2(m —ny) 2 (ny —ny)

t .(1.26)
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At these instants the intensity is minimum

, 1

Time internal betwean two successive minima = —

1~ M

Eqs. (1.25) and (1.26) shows that maxima and minima occurs alternatively at equal intervag

and sound becomes (1 - 1) times maximum and (m; - 1) times minimum in each seconq
Thus number of beats per second = (ny - ny)

Formation of beats is shown in Fig. (1.2).
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