- 2.5 How to find the Principal Value of a given inverse trigonometric function?
- (1) To find the principal value of sin⁻¹ x
 Method: (i) Let y = sin⁻¹ x so that sin y = x where x ∈ R.
 (ii) (a) Then sin y = x = sin θ
 (say; θ is known)

Now
$$\sin^{-1}: [-1, 1] \rightarrow \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

Therefore, the principal value branch of \sin^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$\therefore \sin y = \sin \theta \Rightarrow y = \theta \text{ ; where } \theta \text{ lies in } \left[\frac{-\pi}{2}, \frac{\pi}{2} \right].$$

(b) If $\sin y = -\sin \theta \Rightarrow \sin y = \sin (\pi - \theta)$ so that the required principal value is given by

$$y = \pi - \theta$$
, where $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$

- (2) Proceeding as above, we can find the principal values of other inverse trigonometric functions, keeping in mind the principal value branch of the given function.
- (3) We can also find the principal values of $\csc^{-1} x$, $\sec^{-1} x$ and $\cot^{-1} x$ by expressing cosec y, sec y and $\cot y$ as $\frac{1}{\sin y}$, $\frac{1}{\cos y}$

and $\frac{1}{\tan y}$ respectively, and then solving for $\sin y = \sin \theta$ etc.