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ABSTRACT

This project work is mainly concern on the mathematical
differential equation and its application. In this project,
we want to highlight some mathematical problems in
which process of differentiation are used. This project is
written simply to illustrate on differentiation and their
applications. The formation and classification of
differentiation, the basic techniques of differentiation,
list of derivatives and the basic applications of

differentiations, which include motion, economic and
chemistry.




Introduction to Differential Equations

DEFINITION 1.1 A differential equation (DE) is an equation in which an
unknown function y(t) appears together with some of its derivatives.

In general, a DE can be written as
Ftyt),y@), ..y t)=0, tel.

EXAMPLES.
@ y'®=2y'® +yt) —t? =0, te(-1,1)
(b) y®(@).y' () —y(t) = 2t + 1, t> 0.

ety'(t)
(C) 1+y2(t) == 5) t € R

(@) Calculating the indefinite integral [ 2¢ dt is the same as solving the differential equations
y (t) = 2t. Both problems ask for those functions, which have derivatives equal to 2t.

DEerINITION The order of a DE is defined by the highest derivative
present in the equation.

Examples.

@@ The DE y”(t) - (y'(t))® + 5y%(t) = &' has order 2.
) The DE y*“(t) - y’(t) = 0 has order 4.

Normal form of a DE. If the DE can be solved in the highest order
derivative, then we say that we have obtained its normal form, which can
be written as:

y™(t) = F(t, y(t), y'(t), ..., y" (1), tel.

Examples.
(a) The
DE ty”(t)-ty' () +yt)=e', te[1,2]
can be written in the following normal form:

ity R 1y’,(t) v '1¥,(t) + 1,9‘ , te[1,2].




This normal form was obtained by dividing.the DE by t2. However, if we

consider the inter- val [-1, 1], dividing by t?, which becomes 0 for t = 0
makes the normal form not defined ongthg entire interval [-1, 1]. '

(b) The DE

- ey'® 4 yJ(t) = (t + 1)y(t) cte [0’ 1]
cannot be solved in y’(t), so it cannot be written in normal form.

DEFINITION 2.1.3. A system of differential equations (SDEsLis formed by a

number of differential equations involving more than one unknown
functions and their derivatives.

Example of a SDEs:

T ylt) = y(t) + 2(t)
Z't)=y(t)-z(t), teR.

Note. Every higher order DE can be rewritten as a first order SDEs. This

is very.imFortant for studying the existence of solutions and their
numerical approximations.

Example.

Consider the second order DE y™(t) = y(t) and introduce the function z(t)
=y’(t). Now we can write the S Ey% )= z(t)
% -

z'(t) = y(t),
which has a pair of solutions (y(t), z(t?), in which the first component is
the same as the solution of the original second order DE and the second

component is the derivative of it. Solving the SDEs is equivalent to
solving the DE.

DEFINITION A solution of a DE on an interval | is a function y = y(t)
which, when substituted into the DE, satisfies the equation identically on
the interval |.

Examples of solutions.

(2) y(t) = cos t is a solution of vy (t) + Y(B = 0 on (-, +«). To verify this
we have to observe that y”(t) = — cost, and hence we get

—cost+cost=0, foreacht € (==, +«),

which means that the y(t) = cos t satisfies the DE identically en (, +).
But, observe also that it is not the only solution. y,(t) = sint is another
solution. Moreover, any function of the form y(t) = acost +bsint is a
solution.

y(t) = \,1 — 12 is a solution of the DE y’w +y(t) +t = 0 on the interval
(-1, 1), but it is not a solution on any interval larger than (=1, 1).

ici implicit solutions. Functions can be defined explicitly or
E%(ppllilgil'fly?nql'tgr%l fore, solutions of DEs, which are functions,




hence, we can talk ab icit or implici '
all explicit solutions. out explicit or implicit solutions. The above examples are

For an example of an implicit solution consider the equation
E+yt) +y’®) =5,
which defines the function y(t) implicitly. If we use implicit differentiation,
we get the DE 2t +y’(t) + 3y*(t)y’(t)=0,
which has the same function y(t), as an implicitly defined solution.
Sy Lo DL S e etote gl 1
;V(f;')arf the parameter ¢ can be any real number. We can write this as

= t* + ¢, and the meaning is that we have a one-parameter family of
solutions, which is the same as the family of all the antiderivatives of 2t.

_In general, DEs tend to have infinitely many solutions, but the general
situation is much more complex.

Families of solutions:

If the solutions of a DE depend on parameters ¢y, ..., C, then we call
them a k-parameter family of solutions.

Singular solutions of DE.

A solution of a DE, which is not part of any family of solutions is called singular
solution.

Examples of solutions for DEs.

(@) y'(t)- y(t) = 0 has solutions of the form y(t) = ce'. Therefore, we have a
one-parameter family of solutions and, as we will see later, all solutions
are part of this family.

@) y'(t)-y(t)=0hasa two-parameter family of solutions of the form y(t) = c4€'
..t
+Ce .

: . b
© y'(t)= tdy_(t_)d has a one-parameter family of solutions yt)="1f+c 2 but

Iso a _ .
50131;% y(t) = 0, which is not part of this family.

(d) (yJ(t))2 + (y(t))2 = 0 has exactly one solution, the constant function y(t) = 0.
@ (y'(t)2+ (y(t))* = =1 does not have any solutions.

Solution curve of a DE.

The graph of a solution of a DE is called a solution curve.

~ ot v,(f) = 0.5 and ys(t) = -0.4e' are solutions of
FtJJ(rt)e_)_(F;\’n'{ES-OWS(E) theeir' yrgp)ps, which are tlane curves with equations y =
gt, y =é_ et andy = -0.4e" are

solution curves.




Consi o Initial value problems
onsider an n"-order DE, F (t, y(t), y'(t), ..., y™(t)) =0, tel,andfixto€l.

A system of initial conditions is a system of the form

Y(to) = o, y'(to) = ay, ..., y" (ty) = ap-1,

where aq, Qy, ..., a,-4 are n given numbers.

Initial Value Problems (IVP). The problem whi bi DE
initial conditions is ca|l(ed a)n lnitigl Valurfrs1 Igvrolglr:afn?m Bl gl

F(tyit), y'), ...y (1) =0, tel

(IVP) =a}’J(to{g%1

Slyt=1i(to) = Gt

General solution of a DE: A n-parameter family of solutions of a n"-order
DE is called a general solution if for every system of initial conditions a
member of that family solves the corresponding IVP.

Example. Consider the Initial Value Problem:

|
Oy (@) -y(#)=0, -0 <t<e
(NP)[J@FK
Vi(O)=2¢

The initial condition y(0) = 1 tells that the solution must go through
the point (0, 1), while the condition yJ(Oe = 2 indicates that the slope of
the tangent line to the solution curve at (0,1) must be 2.

The 2-parameter family of solutions

y(t) = ce' + de™,

is a general solution of the DE. The initial conditions lead to the linear
system of equations

c+d=1
c-d=2.

' .« system of linear equations gives ¢ =3/2 and d = 1/2.
Thgrgfvc;?g Er?ilg VP has a unique scﬂutlon of the form

yit) = 3¢ - 1o,







. Classifications of DEs
We will use the following two classifications of DEs:

- By order: As we discussed in the previous section, the order of a DE is

the order of the highest derivative present in the equation. So, we can
talk about DEs of order one, two, thrge and so on. :

- By linearity: A DE of the form

an(t) Y™ (t) + an_s(t)y" () + ... +ay(t)y (1) + an(t) y(t)=F (%),

where the functions an(t), ..., a(t) are given and act as coefficients of the
derivatives of the unknown function and f (t) is the function on the right
hand side, is called a linear DEof order n.

DEs in any other form are called non-linear.
Examples.

(£ + 1)y™(t) +sin(t) - y'(t) - Sy(t) = &'

is a linear DE of order 2.

) The
DE (€ + 1)y (1) +sin(y’ (1) - 5y(t) = &

is a non-linear DE of order 2.
(3) The DE
y'(t)+yt)=t+1

is non-linear and of first order.,

DE g+ 3y () Y - ty(t) =1

is non-linear and of third order.




e Examples of DEs modelling real-life phenomena
fl) Iiad!oactlve decay
tis known that a radioactive material d '

ecomposes at a rate proportional
tg Ethe amount present at the current time. Th?s can be expregse[cji asa .

. M(t)=kM(t), 0=<t,

Is the mass of the radioactive material present after time t.

ee later, the solutions of this first order, linear DE are of the form
M (t) = ce.

The constant k is determined experimentally by the half-life of the

radioactive material, while the para : = B
condition parameter c Is determined by the initial

where M (t)
As we will s

| M (0) = Mo,
which describes the amount of the material present at time t = 0.

(2) Population dynamics.
In 1798 the English economist Thomas Malthus proposed that a
BOpulapon grows at a rate proportional to its size. This leads to the same
E as in the case of radioactive decay:
N't)=kN(t), t20.

Notice that the radioactive decay has the same DE as this model of
population dynamics. However, in the case of the radioactive decay the
solution is accurate on long time periods, while in the case of the
population dynamics only on a short term, except an idealistic situ- ation
of an isolated population with unlimited resources.

For a demonstration of this model see:
http://demonstrations.wolfram.com/ContinuousExponentialGrowth/

In 2 more realistic scenario, the growth rate depends on the size of
the populations as well as on external environmental factors, like limited
resources. One possible scenario leads to the Igglstnc DE

N(t)=aN(t) B-N() ,
where B > 0 is the carrying capacity of the environment.

For a demonstration of this model see: _
http:lldemonstrations.wolfram.com/LoglstlcEquatlonl

cies interact within the same environment, then
Welf rgg{ie;hsatgggetgpgescribe their behavior. In case of two animal
S eges wgere the first species eats only vegetation and the second
sgecies' eats the first species, we are lead to the Lotka-Volterra prey-

predator model: 161 = ax(t) # bx(E)(E)
:’((t))= dy(t) = ex(t)y(t),




where a, b, c,

d are positive constants and ' |
the number of the population of the tv\sxoagpégieegmc’ﬂons e

For a demonstration of the two species

: model check:
http:I/demonstratlons.wolfram.comlPredatorPre

yModel/
For a more realistic model see:

http:ll_demo_nstrations.wolfram.com/PredatorP reyEcosystemARealTimeAgentBa
sedSimulation/

(3) Series RLC electric circuits.

The DE describing the state of an electric circuit comes from Kirchhoff's
second law of electricity, which says that the sum of the voltage drops
around the circuit must add up to the electromotive force. In case of a
circuit containing an inductor, a capacitor and a resistor, we denote by L,
R, C the inductance, resistance and capacitance. The DE describing this

circuit is 1
Lg”(t)+Rq’(t) +C_q(t) =E(t),

where q(t) is the charge on the capacitor and E(t) is the impressed voltage at
time t.

For a demonstration of a series RLC circuit check:
http://demonstrations.wolfram.com/SeriesRLCCircuits/

(4) Mass-Spring systems. .
The DE describing a vertical, free mass-spring system follows from
Hooke’s law and has the form 0
my™(t) +ky(t)=0, t=20,
where y(t) is the the vertical displacement measured from the natural length of
spring, ] _ _ ~
tmht?s tF;we ﬁwass attached to the spring and k is the proportionality constant
of the spring. However, if we assume that damping forces proportional to
the velocity act on the mass- Spring system, then we have the DE
my ™" (t)+8y’(t) +ky(t) =0,
' mping constant. I g
lhrfh?‘raevz :rﬂc;z;h:olduiioﬁs,?we have to give, as initial conditions, the initial
hgight and the initial velocity at which the spring is released.

tion on this problem check: .
hﬁ;‘;}gznqlg;ns??aﬁro?\s.wolfram,comlFreeVibratlonsOfASprlngMassDamperSyste

m/




First order differential e uations solvable by analytical methods

In this chapter we present several t ' '
. , es of first order DEs, which can
be solved by algebraic manipulations gﬁd integrations.

. 3.1. Differential equations with separable variables
DEs with separable variables have the form

y'(t) = F(t)- g(y(t)).

We simplify the way we write these equations in order to separate the
variables:

y' =F(t)-g(y).
Then replace y*

by dy
at=F - a(y),
and get _d! =f(t)dt.

Integrate the left side with respe%txco y and the right side with respect to t
to obtain an equation of the form

Gly)=F(t)+c.
This is the implicit form of the solution. Solving this equation in y gives the

solution in
explicit
form.
Examples.
(1) Solve the
y" :5E ,y_ F<t<
DE Solution: dy= t
dt vy
y dy =t dt
yz = E +C

y% = tg-n— ¢ , solution in implicit form
y(t) = £ FFC, two families of solutions.




(2) Solve the
IVP

. =1 y0)=2
First we solve the DE as in Example 1 and get
The initial condit G
e initial condition shows that w ' ' |
Rat Ve sian e have to use the family of solutions with
and \
get y(0)=-"¢=-2,
which gives ¢ = 4. Therefore, the solution is
yit) =- t2¥ 4",
(3) Solve the 4
DE y'=t'y, teR.

For separating the variables we need to divide the DE by ¥, which possibly excludes the
constant function y&) O from the family of solutions we get. However, if
we substitute the constant 0 function into the DE, we get the identity 0=

0, which shows that y(t) 0 is a solution. Later we will see that it is a
singular solution.

R 22

Observing is just playing the role of an arbitrary constant, to simplify the form
2

c .
t'ﬁgtsomﬁons wgcan replace it by C. In conclusion, we have the one-parameter

bRt =

yh = Z*¢
In this family no particular value of ¢ gives the constant 0 function, = e
hence y(t)

not member of this family, and therefore it is a singular solution.

it " atica”. o
Solving DEs and IVPs with Mathert y(t) analytically. The solutions of

! . E y’(t) = 2ty(t .
gégig;‘ ﬁﬁt;l?grrggﬁnagﬁgmi[avillybg shown in Section 4.4.

Start with the Mathematica input line:




which means that the family of solutions is

= B

If we want to solve the Y= ce.
J
t)= "
IVP then we use the yih=2ya), yi=2,
input line
DSO‘VG[{y'[t] == 2**y[t 1N==

The yIthy[11==2}, yit], t].
answer is

_ ylt] -> 27
which means that the solution is

y(t) = 2¢7"=2 ",
2 e
and hence c = <.

If we want to solve and graph the solution of the IVP

y(t)=y*t) -1, y@)=1,
then we use the lines:

sol = DSolve[{y'[t] == (y[t])*2 - 1, y[0] == 0.5}, yt], 1]

Plot[Evaluate[y[t] /.  sol], {t, -1, 1}]
The graph is:

o4}
0.2F
: =
0.5 (BH]
Z10 0.5
e

~04

. Graph the solution curve. What is limi.- y()?




!first order linear differential equations

differential equations have the general form of
a(t)y’(t)+p =

If the function f on the rig 5 i £ gy g

the equation is homogen

The first order linear

Step 1.

Given a non-homogeneous |i i
corresponding hongogenggu[énggr DE (3.2.1), first we solve the

We solve it as a a(t)y’(t) + bt)y(t) = 0. (3.2.2)

separable DE. a(t)y’ =-b(t)y

dy  b(t)
v al (3.2.3)

; y _a()

Let's stop for a moment. The division by y, shows that, as in the
previous section, we have to check, by substitution into (3.2.2), that the
constant function y(t) 0 is asolution. Indeed, it is, but as we will see later
that it is not a singular solution, because it is a member of the family of
solutions we get.

Also, the division by agt), shows that the domain of the solutions has
to exclude the numbers t for which a(t) becomes 0.

Using the notation

[
u(t) +c= - 5{?
the integration of (3.2.3) )
leadsto e,

By exponentiating both sides we get that
eyl = gut)+c = eu® . ec

positive constant e to a general constant ¢, we get that
y(t)=ce'¥.
In conclusion, the family of solutions of the homogeneous linear DE

s the general form
(3.2.2) always ha g () = G Z(1) | |
t forc =0, the constant 0 function is a member of this family of

and by replacing the

Note tha
solutions. ! L
Step 2. - olution of the non-homogeneous lin
Wepneqdha s.ﬂ-ggllf%‘aﬁ S ré|ctt.|r|1aer »?ariation of parameters method. We
Wi :
ngr\grrn“f%r the particular solution @s :
Yp(t) = C(t)z( )4




where c(t) is an unknown ,
from Step 1. Subsitute y (1) lre g ad 20 is taken
homogeneous equation(3.2.1). e non-

- &
a(t) c (B)z(t) + c(t)z'(t) +b(t)e(t)z(t) = F(t).

Rearrange this equation as

; I
a(t)e’(t)z(t) + c(t) a(t)z'(t) + b(t)z(t)z= f(t)

and use the fact that z(

e teors t) is a solution of the homogeneous equation,

ession inside the square brackets be 0. Hence,

c(t) = f(t)
a(t)z(t)

and therefore c(t) i iderivati () , '
it () is an antiderivative of . Once c(t) is determined, we get

Step 3.
Finally, the solution of the non-homogeneous linear DE (3.2.1) looks like
y(t) = yn(t) + yo(t) -

Note. This method is not valid for non-linear diﬁferer;tia! equations. In
particular, it cannot be used to solve the DEy” +ty" =t.

Example. Solve the
DE ¥ -2n =

Step 1.
y =2ty = 0

dY oty
i
g‘f;_ 2t dt
y
In Iyl = t+c

{"+c

yi=e
y () =ce




Step 2.

Step 3.

Y, (t) = c(t)e®

Y, (t)=c'(t)e® + c(t)2te®
C'(t)e” + c(t)2te - 2tc(t)et =
te’ (t)eu =t

c'(t)= e

c(t)= te™dt=-—g"®

Nl__;

V(t) = ~Teer= -1
2 2

y(t) = ce®. 1
2




\

. Bernoulli's gj - .
Bernoulli's differentig €quationg h:v(:f:;e: R
orm

where k f=0 and k f= 1'y +‘a(t)y = b(t)y*

This is a non line - .
-liNeéar equation, wh ‘
changed to & i b q which will be

Changing the non-linear DE in

Divide the equation By i to a linear DE.

get

yhk A +a(t =k o
Introduce a new function ] b(t).

Z(t) =y ),

z'(t)= (1 =k)-y*@) - yU(t).
Therefore, the non-linear Bernoulli’'s DE i(s )chi\r(rg)ed to
7'172" +a(t)z =b(t),

| k
which is a first order linear DE in the unknown function z(t).

Solve the first order linear DE in z(t).
This is done according to the Steps 1, 2 and 3 from the previous section.

Return to y(t). Write

for which

=1
y(t) = z(t),
which is the solution of the Bernoulli's DE.

Example. Solve the

b b
DE y’ + 0 yt ty ., t=
Solution: . ; linear DE.
Changing the non-linear DE into a
Divide the DE by y*: P
A A
S|
Lntroduc z(t) = (y(®)) ! =)T(E—)-
: in z looks like
_ (—1w2y" and the linear DEin
Then, z' =(-1)y Y 2 +lz=
Solve the first order linear RE

2(t). Step 1. z'+ -:-z =0




tep 2. Search
g(,b%;%gututmg

Step 3.

Return to y(t).

p

Ihepartic

the

dz _dt
z t
In|z| = In |t| +
(o]

Zy(t)=ct.

lution i - . dh
DR o e oM 2 S & e 2"

2

13
Z(t) =~ .
St
Z(t) =ct -
1

y(t) = =TT




On~|inear ho
The non-linear part —Mogeneous differential uation
the earlier studied ”“ea?fﬁge title has the meaning to distinqui 7

Note, that, while most of Mogeneous DEs an stinguish between

0
: _ the DEa and the ones in this secti
linear DEs which are homogenag . NS Section are non-linear, ther%tlgpé

y
We can solve them by introducing a -
new function
t
Henc -1
e,
y(t) = tz(t)
and
‘=z +tz
The new DE in i -
Zis - RS

(),
which is always a DE with separable variable. After solving this DE in z,
we can get y(t) from the equation y(t) = t z(t).

Example. Solve the

DE ty’-y?-yt=0, t>0.
Solution: , o
Dividing the equation by t* gives: _ VZi
= e
. t t
Then, i
t
y=1z
ylaZ +tz’
z ,.'..tz"J = 22 +Z
dz
s
oz Bt
z: .zf=0

72 .
the solutions,
Note: z(t)= 0 is excluc,ie.g E%rglution or not. It turns

substitution, whether it =1 _int

have to check, by
o Weout that it is a solution.







4 =0. 10 havequz[iggﬁgghlich contain just y*
ﬁw? introduce the function » = v th al form form (t, y*
z,2’') = 0. Once we get Z, the solﬁtioﬁnyvff oet a first o
Example. iRy o

Solve the IVP:

rder DE in z: f(t,
egration.

N ] L
y© +3y’ = y(0)=1 y(0)=0.

Solution.:
Introducing the function z = y* e get the linear DE in z:

ZJ+3Z =ezt_

Solving this equation in z gives:

1

z(t) = ce™+ ‘e
Integrating z
leads to i o2y,
3 10

The initial conditions give the system

- 1 g
< 414+d=1
c+51-'--1!60.

esem=landd®i.
Solving this system in ¢ and dI \g/g?:g c=-"9§
Therefore, the solution of the :
1 2t .

=3t + _g =5
10 6

1
= @
yo= 8




\\

General theory o

f different
\'ﬁe% of first order

CoSIc.)pe fieltfis (or direction fields)
nsider a first order DE in normal form

J
2 + Y (®)=f(t, yt), te.
Ify : LR IS @ solution to this DE
- y(to)) is the slope t » tNéN at any point t, | the val ff
:‘(stgluﬁ?n CU'Ii-rve to rt,he%E,o the graph of the functign Y, WhiCLl‘jleig a
Therefore, if we show a recta id i .
evaluate F (t, y) at the poi:?sm?:: %ﬁg 'Srﬁge'i -coordinate system and

information about wher ' en we have graphical
solving the DE. © solution curvesare heading, without actually

DEFINITION. A slope field of a DE is id wi
arrows pointing left, drawn at each poin?orfefr}gng%g?r grid with slopes, as

Exag;E)Ie. This example shows how to draw a slope field manually. Consider
the

y'=t-y.

Draw first a grid in the ty-coordinate system fort = -2, -1, 0, 1, 2 and y = -2,
=10.0.4. 2 A

...................................................

...........................

.....................

........................

ives the functon f tﬁé y) =ty

The right hand side to the DE 97505 arid and show the results as

Eval : ion at each poin e e, 142, 1 '
slopg: tettms funrcr:gg onding points. Fpg teh)i‘s wgy we get Ihe following
s|0pe 1aat theec;?oint 4 1)_ gontmumg |

Slope field. 45




Based on the slope field We can get graphical information about solution
curves. If we choose an initial poin , then we can draw an approximative
solution curve on the graph by followin

: ( g the slopes in the slope field. The
following graph shows the slope field and solution curve for the [VP

! _ ur information
Of course. if the slope field is filled Téttg more slopes, 0 EPREE S
.3 i compliete. i . The role o
about solution curves is MIS 2ele n ne following ey o length of each
at.hema&ca cantg;ﬁg the sine arctangent IS
Cosine arctangen

Vector to one. t,-2,2,}
; nit-yll. } (b

VectorPlot[yCos[ArcTan(t 5Y1]’3S}'"[?§}f 2[.5 ) , Axes ->

(¥, -2, 2 jPlotRange-> f <29 "¢/ 03]

rue, VectorStyle -> Arrow
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We can add to the slope field the solution curve startinc _
shows how solution curves follow thglglgggg =g 2 ) i

Show[VectorPlof[ Cos[ArcTanlt - y]}, Sin[ArcTan]t - t, 2,2

(y, -2, 2 JPlotRange -> ((-2.5, 3} (2.5 25} [, Aﬂé}»‘lfrﬁe,’ i
VectorStyle -> Arrowheads[0.015]], Plot[4*Exp][-t - 2] + t- 1, {t,-2,2 }
,PlotStyle -> Red]]
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Also, there is the option of using StreamPlot.

inf50)= sho-;[StrullP‘lot[{J., t-y), (t, -2.5, 2.5}, {y, -2.5, 2.5), GridLines +» Automatic,
GridLinesStylc - D'Irectivn[bnsh-d] s PlotRange » ({-2.5, 2.5), (-2.5, 2.5})),
Plot[4«Exp[-t - 2) stal, (t, -2, 2), PlotStyle -+ Red] ]

S
N

NS

==

e,

More slope fields can be found at
http:lldemonstrations.wolfram.com/SIopeFields/.
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Autonomous first order differentialequations.

First order DEs in the
form
y'(t) = f(y(t)),
or
shortly
y' =f(y),

are called autonomoys first order DEs. Their SIOFe fields show equal

slopes along horizonta| rid i
slope field of grid lines. For example, lets have a look at the

y'=y?-1.

L
fé’ééféé‘ﬂﬂ =

OSSR

ARl
iR

OO ISSRNGRY

=
111550175777

1 1
=2 -1 [} 1 2

N

R
e
e
o=
T
e
ST~

NS

DEFINITION. A phase portrait for a first order DE is a slope field with
several solution curves, showing the most important qualitative properties

of solutions.

DerINITION Critical numbers (or points) for an autonomous first order
DE are numbers ¢ such that f(c) = 0.

DeriNimioN Equilibrium solutions are the constant functions y(t) = c,
corresponding tg the critical numbers c.

Example. Consider the
DE yJ = yz i 1 !

i = y? - d the critical numbers correspond to the
. Iﬂz!s cas;a I-(y‘) = J whil;hagre s, Lo-len'ce the critical numbers are ¢ =
Ec‘l) lghodni - ¥ while the equilibrium ¢ lutions are y(t) = =1 and y(t) = 1.
The phase portrait in this case looks like:




I i --'-""“"‘T

N \
\%\l\%\\
R RN
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S

/‘//'//’//; i
o i

Classifications of equilibrium solutions:

(@) We call an equilibrium solution y(t) = c attractor (or asymptotically

stable) if for any other solution z(t) which starts from a position sufficiently
close to ¢, we have lim;_,.. z(t)=c

() We call an equilibrium solution y(t) = ¢ repeller (or unstable) if any
other solution z(t) starting any close to ¢ moves away from it as t — .

(c) We call an equilibrium solution y(t) = c semi-stable if it is an attractor
from one side and repeller from the other side.

Example. Let us look at the phase portrait of y* = y?(y2 - 1),

i

e T —
B ey S S

t—

(5]
T

“—h‘-i“-‘wn:‘-"‘*‘m"‘-;“u““-s
%—W“-&*W&%
7 o R e

7’77f//” T

thihht

i s L o
3 ) 1 1 2 3

The y(t)=1 is a repéller, y(t) = 0 is semi-stable and y(t) = -1 is anattractor
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Higher order linear differential equations

General theory
A n"-order linear DE has the form
an(t)y™(t) +a,_, @)Y+ ay )y () + ao(t)y(t)=g(t), tel,
(5.

1.1) where the unknown function is y(t) and the coefficients are the
functions ak(t), 0sk sn.

Example. In the case of J

(- 1)y9t)+ Erayp)- sinty’(t)+y(t)=e', 1<
t<<,at)=t-1,a,t)= +4, 2,(t) = 0, ay(t) = - sint, a(t) =
1and g(t)=e".

The general solution of 3 n"-order linear DE has the form

Y(t) = yn(t) + yy(t)
where y(t) is a n-parameter family of solutions of the linear and homogeneous
DE

AV )+ Oy )+ +ay(t)y (1) + agt)yt) =0 te ,(5.1.2)
and y,(t) is a particular solution of the non-homogeneous DE (5.1.1). As
a n-parameter family of solutions, Yn(t) has to be determined as
Yn(t) = Caya(t) + « - - + chyn(t)
where y(t),-- y(t) are solutions of the linear and homogeneous DE (5.1.2).

However, not every choice of n solutions is suitable. We must choose
linearly independent solutions, which means that if

Ciyit) + - - - +cya(t) =0, for every tel,
then each parameter must be 0:
Ci=r-r=e,=0.
To analytically check the linear independence of solutions, we must check the
Wronskian determinant is not identically zero:

AR
W(ys(t), yat), - - o i ya (t) 2 ‘=0,
ya(t)) =" ; B
-y("ﬂ(t) y(ﬂr1)(t) — y(""”(t) :

foratleastones (17, 51




8 b=ag-ps.

c d:
aboc
-def:a 'ei_:-—b' df+cdf
-8 h | *h S g 1 g

Higher order determinants are calculated in a similar way by expanding

them using the first row, and thus reducing the calculations to
determinants of one size less.

Definition. The functions Y1(t): , ya(t) form a Fundamental Set of Solutions
(Shortly FSS) of the linear a2y homogeneous DE (5.1.2) if

I. Each function is a solution.
2. They are linearly independent.

THEOREM 5.1.1. |f the functions Yi(t), -+, yn(t) are solutions of the linear and
homoge-

?F-E%l)ISD (5.1.2) and W (y.(t), » Oforatleastone t € |. then they are lineariy

independent and form a FSS,

Examples:
(1) Let us show that the functions y,(t) = t and Ya(t) = t* form a FSS for the DE

t'y"-3ty'+3y =0, t¢ (0, +0)
First, let us check that the two functions are solutions. By substituting
¥1(t) = t into the DE we get
t*-0-3t-1+3t=0

WIty'ch leads to 0 = 0. Repeat the process for y,(t)

, too. Then aneteties 3

Wt t)= |4 =3t -t =2t

which is not zero for any (would be enough to check Just for one) t > 0.

Therefore, y, (t)=t

and y,(t) = t* form a FSS,

However, if we want to see whether zgt) =tand z, = 5t form a FSS, then
We can check that they are solutions, but

t 5t
/4(7 51)=_ 18, =5t=5t=0,
Wwhich shows that they are not linearly independht, Therefore, they do not form aFSS§,

Regarding the existence and uniqueness of solutions for IVPs

-




THEOREM . Consider the IVP
C Aty () + an1 (" Ot) + - - - + agtyy(t) = g(t) , t € [0, B

S y(to) = Yo, Y'(t) = y1, -+, Y™ (ko) = s,
where t; € [a, B] is a fixed point. '
If the functions ay(t), - - - , aq(t), g(t) are continuous on the interval [a, B] and
an(t)

any a <t < B, then the IVP has a unique solution on the entire interval [, B].
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Step 1. Using the method frq

Step 2. In this exerci m Section 5, ; %
1) S%Iution of thg?:rﬁlasrg{?t(t)-=.(2t + 3)g0t 2,:‘39(]02%'”“}’#(%—_ c1 +ce'.
in the form eristic equation ‘3 » Which is a simple (k =

= r=0. So, we search for y,(t)

- Yo(t) = t(b,t + 0t w1 42
Substituting y,(t) into the DE l; adsb:c),e = bit? + byt .

. 2b,; - =y
which can be rearranged a;, 2bit=by=2t+3,

_2b1t+2b1—b0=2t+3.

The two sides must be identi

anG 201 <o =3, which Gves 612+ anbes ' Band
V)= st )

Step 3. The final form of the solution is

y(t) = c; + ce' -t - 5t

S.1. The Cauchy-Euler DE
The Cauchy-Euler DE has the form

R LI ()] = -
an t" -y Fan- t" -y + o ar -ty Y a0 y(t) = (), (5.4.1)

which has to be solved fort < 0 or t > 0. This is a |i DE wi
i ‘ : th non-constant
coefficients and we will reduce it to a linear DE wit S SnStant coofich

achieve this, we use the substitutions with constant coefficients. In order to

t=letorx=Int Nift=0%
and
t=-e*orx=In(-t),ift<0.

Let us consider the t > 0 case.
We have to substitute the derivatives in t with derivatives in x. Using the chain rule we

get that dy dydx_dyl_dy
BT = e P gl e
Eurth dt dxdt dxt dx
urthermore, b
o B = z
gty ddy o« o« Y & B
= = & e = .- e
4z dt dt dx dx dx? dx '
and s

- z T - z - 2 ”

&y 4 "dy _d diy _ defoa g dy_; D, v
» d dE a B E & e Tk

inue in thi we can express any derivative in t in terms of derivatives in X

gt::ie ﬁ?";'ﬂé’seti't'ﬂttiﬂzfﬁg}n into thepequatmn (5.4.1), we obtain a linear differential

equation with cons nt coefficients.
Example Solve the following DE:
;i gy +5t%y" + Tty  +8Y = 2int, t>0.

Let us use the substitution t = ¢ and get_ Ny :
ax d7Y_ e—2x+78x;:e'“+8y=2x

- 43 d? d -3x
e3x %_3&24-2‘&2! e +5e az




analytical solution to the DE y'(t) = 2ty(t).

The answer corresponds to the one
solutions y(t) =

y(1)=2.
in2}= DSolve[ { y ' [t] & 2«

patrameter family of
12 :
Ce". Let's solve noe the IVP y'(t)=2ty(t),

b YItLy (=2}, y (] 1]
oudle {{y[t] - 267},

The answer corresponds to the solution yt)=2e'e?= ﬁ e?.

If we want to plot the solution, first we have to define the solution as a function:
n3)= S0l = DSolve [ { y'[ t]==2« teyl[tly[1]==2}y[1],¢

ousi- {{y[t]-2¢"*2,
m4r=2 [t_]:= Evaluate [y [t]/. sol ] |
Now, z(t) is the solution function and we can use it for evaluation and graphing:
injg}=2Z [ 0.1 ]
outsi={ 0.743153
nrp=Plot [z[ t], {t -1,1}]

Oulf7]=
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Limits and
continuity

Assumed knowledge

The content of the modules:

= Algebrareview
*  Functions I
® Functions IT

® (Coordinate geometry.

Motivation

Functions are the heart of modelling real-world phenomena. They show explicitly the
relationship between two (or more) quantities. Once we have such a relationship, various

questions naturally arise.

For example, if we consider the function
sinx
.f(’r) = 2

X

we know that the value x =0 is not part of the function’s domain. However, it is natural to
ask: What happens rear the value x =07? If we substitute small values for x (in radians),
then we find that the value of f(x) is approximately 1. In the module T#e calculus of
trigonometric functions, this is examingd in some detail. The closer that x gets to 0, the

SIn X
closer the value of the function f(x) — getsto 1.
x

Another important question to ask when looking at functions is: What happens when the
independent variable becomes very large? For example, the function f(7 ) = ¢’ sin 7 is
used to model damped simple harmonic motion. As 7 becomes very large, /(1) becomes

very small. We say that f(/) approaches zero as  goes to infinity.

Both of these examples involve the concept of limits, which we will investigate in this
module. The formal definition of a limit is generally not covered in secondary school
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mathematics. This detinition is given in the Links forward section.
At school level, the notion of limit is best dealt with informally, with a

strong reliance on graphical as well as algebraic arguments.

When we {irsi begin io icach siudenis how o skeich ihe graph of a
function, we usually begin by plotting points in the plane. We generally
just take a small number of (generally integer) values to substitute and
plot the resuiting points. We then ‘join the dots’. Thatwe can ‘join the
dots’ relies on a subtle yet crucial property possessed by many, but not
all, functions; this property is called continuity. In this module, we briefly

examine the idea of continuity.

Content

Limit of a sequence

Consider the sequence whose terms begin
111

| P

23 4
and whose general term, is * . As we take more and more terms, each
term 1s getting smaller in size. Indeed, we can make the terms as small as we
like, provided we go farenough along the sequence. Thus, although no term in
the sequence is 0, the terms can be made as close as we like to 0 by going far

enough.

A I T R, Py
13 U auid wi vWwiilco

lim = =0,
n—co g
It is important to emphasise that we are not putting n equal to oo in the sequence, since
infinity is not a number — it shonld he thonght of as a canvenient idea  The statementahove
says that the terms in the sequence 1 get as close 10,0 as we please (and continueto be close to 0),

by allowing n to be large enough.
i
5 .
5 x x
]
L
0

- <

-» N

1 2 3 4

vt

Graph of the sequence '

n




In a similar spirit, it is true that we can write

n—oo n2—2

Intuitively, we can argue that, if n is very large, then the largest term (sometimes called
the dominant term) in the numerator is 37°, while the dominant term in the denomina-

tor is #°. Thus, ignoring the other terms for the moment, for very large # the expression
3 +2n+1

ne —
The best method of writing this algebraically is to divide by the highest power of » in the

1s ciose to 3.

denominator:
s 2.4
L 3 +2n+1 . BFgR =
im —— = |im —?
n—o0 nz -2 n—oo | et
Now, as n becomes as large as we like, the terms ,% , ',;l'z and “,2“,2 approach 0, so we can

complete the calculation and write

2. L
oo 377 +2n +1 - Tl 3+, 53
n—co n2 -2 n—oo ] — nzz
. 2 1
+ %+
— nl-gnm ¢ n - n?
T lim 1-2
n—co n
3 3
1

Exercise 1

-3 Find

. 5n 4(-1)
lim ——————,
n—oee  4n3+2




Limiting sums
A full study of infinite series is beyond the scope of the secondary school curriculum. But

one infinite series, which was studied in antiquity, is of particular importance here.

Suppose we take a unit length and divide it into two equal pieces. Now repeat the process
on the second of the two pieces, and continue in this way as long as you like.

(SR
Rl Lo
00 [1=
[
o2}

-
-

1

Dividing a unit length into smaller and smaller pieces.

This generates the sequence

11
-

1
33 E’E"m

Intuitively the sum of all these nieces shonld he 1

. 1
After n steps, the distance from 1 is __, This can be written as
2n
1 1 1 1 1
+Z+ §-+"‘+27=1—§‘—.

[

The value of the sum approaches 1 as 7 becomes larger and larger. We can write this as

1 1
B

1

1
+§+---+2—n——>1 as n— oo,

N
|

We alse write this as

1 1 1

—F —+ —+--- =1,
2 4 8

This is an example of an infinite geometric series.

A series is simply the sum of the terms in a sequence. A geometric sequence is one
in which each term is a constant multiple of the previous one, and the sum of such a
sequence is called a geometric series. In the example considered above, each term is %

2
times the previous term.




A typical geometric sequence has the torm
a,ar,ar’ar’, ..., ar-'

where # /= 0. Here a is the first term, r is the constant multiplicr (oftcn called the com-

o mon ratio) and # is the number of terms.,

The terms in a geometric sequence can be added to produce a geometric series:
S,=a+ar+ar®+ar’+.-+var"-'. (N

We can easily find a simple formula for S,. First multiply equation (1) by » to obtain
rS,=ar +ar*+ar®+--- +ar". )

Subtracting equation (2) from equation (1) gives

AR TAR AR YAk Vil Vi

Sp—rSp,=a—ar”

from which we have
a(l-r")

S =" =
i f—p forr /=1.

Now, if the common ratio r is less than 1 in magnitude, the term » " will become very

small as n becomes very large. This produces a limiting sum, sometimes written as Sc.
Thus, if |[r| <1,

Sa; lim Sn

n—>00

= lim a(l—r”) = “

n—soo  1-p 1-r

In the example considered at the start of this section, we have a = - and r = !, hence the
2

Nl""

value of the limiting sum is — =1, as expected.

Limit of a function at infinity

Just as we examined the limit of a sequence, we can apply the same idea to examine the
behaviour of a function f(x) as x becomes very large.




1
For example, the following diagram shows the graph of /' (x) = R for x > 0. The value of
the function f'(x) becomes very small as x becomes very large.

V g

\ /(x)=}c,x>0

xX—oo X

One ofthe steps involved in sketching the graph of a function is to consider the behaviour
of the function for large values of x. This will be covered in the module Applications of
differentiation.

2%
i We can see that, as x becomes very
large, the graph levels out und approaches, but does not reach, a height of 2.

The following graph is of the function f° x)=

s mmm SEx wm omwe e mme s amn s




We can analyse this behaviour in terms of limits. Using the idea we saw in the section

. - 2.
Limit of a sequence, we divide the numerator and denominator by x™:

Tt 2
Iim ___ = lim =2
x—+00 I +X° _\‘—aoo':z_.'. 1

Note that as x goes to negative intinity we obtain the same limit. That is,

sz

x—o-o0 1+x2

2.

This mcans that the function approachces, but docs not rcach, the valuc 2 as x becomes
very large. The line y = 2 is called a horizontal asymptote for the function.

Exercise 3

Find the horizontal asymptote for the function f(x) =

3x2+1°

Examining the /ong-rerm behaviour of a function is a very important idea. For example,
an object moving up and down under gravity on a spring, taking account of the inelas-
ticity of the spring, is sometimes referred to as damped simple harmonic motion. The

displacement, x(¢ ), of the object from the centre of motion at time ¢ can be shown to
have the form

x(t) = Ae-" sin Br,

where 4, a and B are positive constants. The factor 4e-™ gives the amplitude of the
motion. As 7 increases, this factor A¢-% diminishes, as we would expect. Since the factor

sin Bf remains bounded, we can write

lim x(7) = lim Ae-" sinBf =0.

t oy f o

In the long term, the object returns to its original position.

Limit at a point
As well as looking at the values ot a function for large values of x, we can also look at what

is happening to a function near a particular point.

For example, as x gets close to the real number 2, the value of the function f(x) = x? gets
close to 4. Hence we write

lim Xl =4
x—2




Sometimes we are given a function which is defined piecewise, such as

x+3 ifx<2
f)=

x itx>2.

The graph of this function is as tollows.

(2,5)
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We can see trom the ‘jump’ in the graph that the function does not have a limit at2:

® asthe x-values get closer to 2 from the lef, the y-values approach 5

* but as the x-values get closer to 2 from the right, the y-values do not approach the
same number 5 (instead they approach 2).

In this case, we say that

lim f'(x) does not exist.
x—2

Sometimes we are asked to analyse the limit ot a function at a point which is not in the
domain of the ﬁ?ctign. For example, the value x = 3 is not part of the domain of the

function f(x) = - However, if x /= 3, we can simplify the function by using the dif-
ference of two scfu*aﬂes and cancelling the (non-zero) factor x — 3

X _9  (x-3)x+3)

x-3 x-3

J(x)=

=x+3, forx /=3.




Now, when x is near the value 3, the value of f(x) is near 3 + 3 = 6. Hence, near the
x-value 3, the function takes values near 6. We can write this as

lim ** =9 =6.
x—=3 X =3
x-9
The graph of the function f(x) = 5 is a straight line with a hole at the point (3,6).
y ™
#
ot
(3.6)
/)
'
/ t > X
P 0 3
/
v
Exampie
Find
¥ -3x+2

Solution

We cannot substitute x = 2, as this produces 0 in the denominator. We therefore factorise

and cancel the factor x —2:

. X =3x+2 (x=2)x-1)
lm ——— =]

-2 x2-4 —xl—{lzl(x -2)(x +2)
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Even where the limit of a function at a point does not exist, we may be able to obtain
useful information regarding the behaviour of the function near that point, which can
assist us in drawing its graph.
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For example, the tunction

2
f&)
x=-1

is not defined at the point x = 1. As x takes values close to, but greater than 1, the values
of f'(x) are very large and positive, while if x takes values close to, but less than 1, the
values of f(x) are very large and negative. We can write this as

_2 2
— 00 as x — 1* and — —00 as x = 1-.

A x—1
The notation x — 1* means that ‘x approaches | from above’ and x — 1- means ‘x ap-

proaches 1 from below’.

2
Thus, the function f (x) = “has a vertical asymptote at x = 1, and the limit as x — 1
does not exist. The followmg diagram shows the graph of the function f(x). The line
y =0is a horizontal asymptote.

Exercise 4

Discuss the limit of f'(x) = 2

7 atthe points x =1, x =—1 and as x — *co.

—-2x - +3 K
(x=5)x+3)
T yxesIxr=3- ZX =1RX #:71

J-xmamuunsnhhuansmnnmmmd_.._w

as I
{4 ]
. i i "
ia x—o0 b x-s5 C x—--3 d x -2 e x-—-0!
477 o 1 3 gl
___________ T e T TR e e e e e o e ey o e e e e e e e o L o e e Bl T R T e
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Further examples

There are some examples of limits that require some ‘tricks’.

For example, consider the limit

i “x2+4-2
im—

x—0 X

We cannot substitute x = 0, since then the denominator will be 0. To find this limit, we

)

-

need to ratioqalise the numegator:
x*+4-2 XA =

lim lim ‘2T +2
2 = ®
= X &0 % “x2+442

(x*+4)-4

x2 Tx24442
1

1
x>0 721442 4

Find
TXTF15-4 Lo
a lim b lim=2
x—1 =1 x—=4 x—4

So far in this module, we have implicitly assumed the following facts — none of which

we can prove without a more formal definition of limit.

Algebra of limits

Suppose that f(x) and g(x) are functions and that a and k are real numbers. If both

lim f'(x) and lim g (x) exist, then
x—da x—a

a lim f(x)+g(x) = ymf(vr)+ lim g(x)
x—a —a x—a

b limkf(x)=klim f(x)

x—d x—a

c lim f(x)g(x)= lim f(x) Tim g(x)

x—a x—a —a

fx)  lim f(x)
d lim & el _, provided lim g(x) is not equal to 0.
x—a g(x) lim g(x) x—a
x—a




Continuity

When first showing students the graph of y =x°, we generally calculate the squares of a
number of x-values and plot the ordered pairs (x,)) to get the basic shape of the curve.

We then ‘join the dots” to produce a connected curve.

We can justify this either by plotting intermediary points to show that our plot is reason-
able or by using technology to plot the graph. That we can ‘join the dots’ is really the

consequence of the mathematical notion of continuity.

A formal definition of continuity is not usually covered in secondary school mathematics.
For most students, a sufficient understanding of continuity will simply be that they can
draw the graph of a continuous function without taking their pen off the page. So, in

particular, for a function to be continuous at a point a, it must he defined at that point.

Almost all of the functions encountered in secondary school are continuous everywhere,

1
unless they have a good reason not to be. For example, the function f(x) = lS continu-
ous everywhere, except at the point x =0, where the function is not deﬁned

A point at which a given function is not continuous is called a discontinuity of that func-
ton.

Here are more examples of functions that are continuous everywhere they are defined:
® ] 2 ! f‘ S 2

polynomials (for instance, 3x* +2x - 1)
= the trigonometric functions sinx, cosx and tanx

= the exponential function @* and logarithmic function log, x (for any bases a >0 and
b>1).

Starting from two such functions, we can build a more complicated function by either
adding, subtracting, multiplying, dividing or composing them: the new function will also
be continuous everywhere it is defined.

Example;
- B _,""f“" e
'‘Where is the function f(x)="7" “1 6- continuous?'
| :
1 .
Solution \
_] i
ﬁé function f(x)= ; - ;s_a—q—ubf]éﬁt%? two 6&;60—16151—5“56'&1;{&55@575 contin-,

4
~ l_,-‘-l_r,‘-_r.a-a-a-_'-.r-.r_r.r.rﬂr.a-..r.r_v-.--r.a—..r.-’_n—.r_-.w.-..—..-.,—_.—_,-,,-,.-d-_,-_,__.__,._,__‘._,._,._.—_‘-_.l ______
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Continuity of piecewise-defined functions

Since functions are often used to model real-world phenomena, sometimes a function
may arise which consists of two separate pieces joined together. Questions of continuity
can arise in these case at the point where the two functions are joined. For example,

consider the function

X9

. ifx /=3
fx= x-3

¢ ifx=3.

This function is continuous everywhere, except possibly at x = 3. We can see whether or
not this function is continuous at x = 3 by looking at the limit as x approaches 3. Using

the ideas from the section Limit at a point, we can write

Hm ¥ =9 —lim E=3Xx+3) _

x=3x -3 x-3 x-3

Since 6 is also the value of the function at x = 3, we see that this function is continuous.
Indeed, this function is identical with the function f(x) =x +3, forall x.

Now consider the function

X9

. ifx /=3
gxy= *-3

*7 ifx=3.

The value of the function at x = 3 is different from the limit of the function as we ap-
proach 3, and hence this function is not continuous at x =3. We can see the discontinuity

atx =3 in the following graph of g(x).

N

)

L o
W
)




We can thus give a slightly more precise definition of a function /(x) being continuous

at a point a. We can say that f(x) is continuous at x = a if

® f(a)isdefined, and
© lhim f(x) = f(a).

=y

Example
Examine whether or not the function
xP-2x+1 ifx<2
fx) =,
3x -2 ifx>2

is continuous at x =2,

Solution

Notice that /(2) =2 -2x2+1=5. Weneed to look at the limit from the right-hand side

atx =2. Forx >2, the function is given by 3x -2 and so
lim f(x)= lim (3x-2)=4.
x—2* x—2*

In this case, the limit from the right at x = 2 does not equal the function value, and so the

function is not continuous at x =2 (althoungh it is continuous everywhere else).

Vi
sl (2,5)
4T ;'[(2,4)
3¢
N
5 !’ \\‘df 3 1 LY
3210 1 2 3 °°
14
,2_,

e - RIS e’ e )t o o e e i i e e e




Ca—x? ifx <O

oot 44x ifx>0:
i

Links forward

Formal definition of a limit

In this module, the notion ot limit has been discussed in a tairly informal manner. To
be able to prove results about limits and capture the concept logically, we need a formal
definition of what we mean by a limit. We will only look here at the precise meaning of

lim f(x) £, butthere is a similar definition for the limit at a point.

xX—oo

In words, the statement lim 0d}f'(a:) = L says that f'(x) gets (and stays) as close as we please
r—r
to L, provided we take sufficiently large x. We now try to pin down this notion of c/oseness.

Another way of expressing the statement ahove is that, if we are given any small positive
number ¢ (the Greek letter epsilon), then the distance between f(x) and L is less than &
provided we make x large enough. We can use absolute value to measure the distance
between f(x)and L as | f(x)—-L]|.

How large does x have to he? Well, that depends on how small ¢ s,

The formal definition of lim f(x) =L is that, given any £ >0, there is a number Af such
*—that, if we take x to barger than M, then the distance |f(x)— .| is less than

L-¢
a a M s
» The value of f(x) stays within ¢ of 2. from the point x =A onwards.
s
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. We know from our basic work on limits
x

For example, consider the function /(x) —

that lim f(x) = 1. For x > 0, the distance is
X—+ 00

3 1
Foy-1= 21y =1

x X
So, given any positive real number £, we need to find areal number M such that, if x > M,

. . . 1
then ! < ¢ For x > 0, this inequality can be rearranged to give x > = Hence we can
X

choose M to be lE

Exercise 8
2

2x“ 43
Let f(x)= PR Given £ > 0, find M such thatif x > M we have |f(x)-2| < &. Conclude

that f(x) has a limit of 2 as x — oo.

While the tormal definition can be difficult to apply in some instances, it does give a very
precise framework in which mathematicians can properly analyse limits and be certain

about what they are doing.

The pinching theorem

One very useful argument used to find limits is called the pinching theorem. It essen-
tially says that if we can ‘pinch’ our limit between two other limits which have a common

value, then this commeon value is the value of our limit.
Thus, if we have
g(x) s f(x)<s h(x), forallx,

and lim g(x) = hm A(x) = L, then lim f'(x} = L.

x> x—a X—rd
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Here is a simple example of this.
n!
Tofind lim | we can write

n—oo pt
at n n-1 n-2 3 2 1
_ = - x bod Hane X - = - » -
n  n n n n hn R
I 1
SIxIxIxeeox]lx]x—=—,
n n
_ n! 1
where we replaced every fraction by | except the last. Thus we have 0 . S Since
n
1 i 5 3 . nl
lim = =0, we can conclude using the pinching theorem that lim — =0.
R=00. 1} n—oo pt

Other examples will be found in later modules. In particular, the very important limit

sinx
—1 as x—0

p
(where x is expressed in radians) will be proven using the pinching theorem in the mod-

ule 7he calculus of trigonometric functions.

Finding limits using areas

One beautiful extension of the pinching theorem is to bound a limit using areas.

1

1
We begin by looking atthe areaunderthecurvey =~ fromx=1tox =1+ -.
-\A n

Yo

!_
\

The area under the curve is bounded above and below by areas of rectangles, so we have

J.l+l'

1 » 1 1
—l‘x < dx € —x1.
no1+%4 1 X H
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Hence
1 1

1
— <log, 1+ <.
1+n Be ] n

Now multiplying by n, we have
_n &
snlog, 1+ <1
1+n n

Hence, if we take limits as 7 — o0, we conclude by the pinching theorem that

1 1 »n
nlog. 1+ —1 == log 1+ -1
° H H
1n
= 1+ —e {n
n
That is,

. 1 »

lim 1+ =e.

n—oo n

History and applications

Paradoxes of the infinite

The ancient Greek philosophers appear to have been the first to contemplate the infinite
in a forma! way. The concept worried them somewhat, and Zeno came up with a number

of paradoxes which they were not really able to explain properly. Here are two of them:

The dichotomy paradox

Suppose | travel from A4 to B along a straight line. In order to reach B _ I must first travel
half the distance 48, of AB. But to reach B, I must first travel halt the distance 45,
of AB,, and so on ad infinitum. They then concluded that motion is impossible since,

presumably, it is not possible to complete an infinite number of tasks.

The paradox of Achilles and the tortoise

A tortoise is racing against Achilles and is given a head start. Achilles is much faster
than the tortoise, but in order to catch the tortoise he must reach the point P, where the
tortoise started, but in the meantime the tortoise has moved to a point P, ahead of P,.
Then when Achilles has reached P, the tortoise has again moved ahead to .. So on ad

infinitum, and so even though Achilles is faster, he cannot catch the tortoise.

In both of these supposed paradoxes, the problem lies in the idea of adding up intinitely

many quantities whose size becomes infinitely small.




Pi as a limit

The mathematician Frangois Vieta (1540—1603) gave the first theoretically precise expres-

sion for 11, known as Vieta’s formula:

r S—— 7 S———
2 1 1 1 1 21 1 1 1 1
J—— — < St Dol T e e,
m 2 2 2 3 2 2 2 2 2

This expresses IT as the limit of an infinite product.

John Wallis (1616—-1703). who was one of the most influential mathematicians in England
in the time just prior to Newton, is also known for the following very beautiful infinite
product formula for 1T

IO 2x2%x4x4X6%x6%--+
2 —1x3x3x5x5x7x...'

He also introduced the symbol oo into mathematics.

Infinitesimals

T'he notion of an infinitesimal essentially goes back to Archimedes, but became popular
as a means to explain calculus. An infinitesimal was thought of as an infinitely small
but non-zero quantity. Bishop Berkeley (1685—-1753) described them as the ‘ghosts of
vanished quantities’ and was opposed to their use

Unfortunately, such quantities do not exist in the real number system, although the con-
cept may be useful for discovering facts that can then be made precise using limits.

The real number system is an example of an Archimedean system: given any real num-
ber a, there is an integer n such that na > 1. This precludes the existence of infinitesi-

mals in the real number system.

Non-archimedean systems can be defined, which contain elements which do not have
this property. Indeed, all of calculus can be done using a system of mathematics known
as non-standard analysis, which contains both infinitesimals and infinite numbers.

Cauchy and Weierstrass

Prior to the careful analysis of limits and their precise definition, mathematicians such
as Fuler were experimenting with more and more complicated limiting processes; some-
times finding correct answers — often for wrong rensons — and sometimes finding in-
correct ones. A lack of rigour often led to paradoxes of the type we looked in the section
Paradoxes of the infinite.




In the early 19th century, the need tor amore formal and logical approach was beginning

to dawn on mathematicians such as Cauchy and later Weierstrass.

The French mathematician Augustine-Louie Cauchy (pronounced Koshi, with along o)
(1789-1857) was one of the early pioneers in a more rigorous approach to limits and cal-
culus. He was also responsible for the development of complex analysis, which applies
the notions of limits and calculus to functions of a complex variable. Many theorems and
equations in that subject bear his name. Cauchy is regarded by many as a pioneer of the
branch of mathematics known as analysis, although he also made use of infinitesimals.

Analysis may be thought of as the theoretical side ot limits and calculus. It is a very
important branch of modern mathematics, and teaches us how to deal with calculus in

ways that are rigorous and logically valid.

In 1821, Cauchy wrote Cours d’Analyse, which had a great impact on continental math-
ematics. In it he introduced proofs using the £ notation we saw in the section Links

Jorward (Formal definition of a limit).

At roughly the same time, Bernard Bolzano (1781-1848) was attempting to deal with
some of the classical paradoxes in his book The paradoxes of the infinite. He was the

first to give a rigorous &-0 definition of a limit, although much of his work was not widely
disseminated at the time.

While Cauchy made mathematicians think more deeply about what they were doing,
it was Karl Weierstrass (1815-1897) who is generally regarded as the father of modern
analysis. He gave the first rigorous definition of continuity of a tunction f'(x) at a point a.

The definition states: Given & > 0, there is a positive real number & such that, if |x —a| < J,
then | f(x) - f(a)| <&

ydh
y=f(x)
TRV /
j0s]1) SR———— '
(-] 2 R— , : .
0 a- é :a =a+ > > X

Continuity of f(x) at x =a.




This basically says that a function f'(x) is continuous at a point a if x-values that are close
to a (i.e., within & of a) get mapped by f to y -values that are close to f'(a) (i.e., within £

of f(a)).

In fact, this definition of the continuity of £ (x) at a says exactly that !rif.]},f(x) = f(a),
using the formal definition of a limit. So it agrees with our definition of continuity in the

section Continuity of piecewise-defined functions.

Weierstrass’s work was very influential and formed a solid foundation for analysis for
decades to come. He shocked the mathematical world by coming up with a function
which is continuous everywhere but differentiable nowhere! That is, its graph could be
drawn without lifting the pen, but it is not possible to draw a tangent to the curve at any
point on it! The function he gave is expressed in terms of an infinite series of functions:

X
fx)= ~ cos(4”x).

n=1 27

The following diagram, created using Mathematica, gives the graph of y = o j cos(4"x)

n=1

forO<x <2rm.

N&‘“M'v }Wmt

An approximation to Weierstrass’s function.

Roughly speaking, this infinite series has trigonometric terms with amplitude;',. , which
quickly approaches 0 as n gets larger. It is this aspect that is used to prove continuity. It
can be formally proven that the infinite series converges for every value of x, and that the
function so generated is continuous everywhere. If, however, we were to try to differen-
tiate this function term-by-term, then the derivative of the general term is —2”" sin(4” x)
whose amplitude is 2", which becomes very large as n increases. So the series of deriva-
tives does not converge. Hence the function is not differentiable anywhere.




Answers to exercises

Exercise 1
WV

) 5}’3 A n .
tim ~” “(_1) =lim =
n—sw  4pd+2 nso 4+ 4 4
n

Exercise 2

; . 3 ; - 3
In the geometric series % + 28 + % +---, the first term a is 3 and the common ratio r is %

(which is less than 1 in magnitude). So the limiting sum is

[7%]

i 3
Exercise 3
x? =1 sy 1
lim . x -
= 3x2 4] =JJJE!31=§= 3
Xz—l i

So the function f{x) = 3x2 41 has horizontal asymptote y = 5.
3x

Exercise 4
2
Define f(x) = — T Then
o —
J(x)— —o0 as x = 1~ and FJ(x)—> +ooas x = 1,

and so lim f(x) does not exist. Also,

x—1

f(x)-—»+oo as x —» —1- and f(x)—v—ooas X — —1*,

hence lim f'(x) does not exist. We can calculate
1

>

lim f(x)= lim —S 1 and im f)=1.

x— a0 x— o0 1 o _‘% X =00
Exercise 5
(x—=5)x+3)
Define f(x) — . Then:

(2x = 1)(x +3)

J(x)=> % 4s x — o

T o

f(x)—0asx —5

(a}

f(x)—*%asx-*-:&

a

" + 5 -
f(x)— -oasx — t ,and f(x)— +0o ag x — 1 , 80 f(x) has no limit as x — 1
2

b

&«

e f(x)—5asx —0

® ru- - -
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Exercise 6

a Werationalise the numerator:

 Txdwts—4 | Txrars—a4 T xEEts+d

lim lim -
= P P

x—1 x—1 x—1 x—1 x4 +15+4

-1

i i (x—1}x+1)
= Iim = - -
=l(x—1) xZ+15+4 x>1(x-1) x2+15+4

x+1 1

=lim =

b We getrid of the fractions in the numerator:

_l._..l l_l Ax 4 —-x
1 E. 4 =1i b g =lim
chl-{?x -4 ]\.LP-?* xX—-4 * 4x x4 4x(x —4)

1 1
=1m__(u). =lim - =- .
=4 dx(x —4) x4 4x 16

Exercise 7

Clearly f(0) =4. We need to look at the limit at x = 0 from above. For x >0, we have
f(x) =4+ x Sof(x) > 4asx — 0* Since this limit is equal to /(0), we conclude that /is

continuous everywhere.

Exercise 8
Let £>0. We want to find M such that, ifx > A/, then |f(x) - 2| < €. Note that

243 3

[f(x)-2|=. ol —2.= 5.
q

3 3
We want_2 < £, which is equivalent to x* > = Hence, we take Af = QE For all x > M
£ s

x 3 .
we now have |/ (x)-2| = _ <& This tells us that /(x) has a limit of 2 as x — co,
x‘
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CONCLUSION

From the above discussion it is clear that the major
part of the limit and continuity whose roll interior
obviously in the last discussion. | have mentioned
theorems related to limit and continuity. | have discussed
there example and application in various problem. It can
be consider as the basic function of limit and continuity.

| am hopeful and believe that the branch of limit of
continuity will be developed with great external to
coming future. So that we able to solve more together
problem.




